Preview

Rational Pharmacotherapy in Cardiology

Advanced search

Effect of CYP3A4/5, ABCB1 gene polymorphisms on the residual equilibrium concentration of apixaban and bleeding in patients with non-valvular atrial fibrillation and deep vein thrombosis

https://doi.org/10.20996/1819-6446-2024-2941

Abstract

Aim. The aim of our study was to investigate the influence of polymorphic markers of CYP3A4*22 CYP3A4*22 (c.522-191C>T, rs35599367), CYP3A5*3 (c.219237A>G, rs776746), ABCB1 rs1045642 (c.3435T>C) and rs4148738 (c.2692-2236C>T) genes on the plasma concentration of apixaban, on changes in prothrombin time (PT), activated partial thromboplastin time (APTT), and bleeding development in patients taking apixaban.

Material and methods. The study included 108 patients with non-valvular atrial fibrillation and deep vein thrombosis receiving apixaban in therapeutic doses. Genotyping was performed by real-time polymerase chain reaction. Apixaban concentrations were measured using an electrospray ionization mass spectrometer in positive ionization mode. Because the daily dose of apixaban was different (5, 10, and 20 mg daily), the residual equilibrium concentration (Cmin,ss) of apixaban was adjusted relative to the daily drug dose (Cmin,ss/D). PT and APTT were determined using an automatic coagulometer analyzer Destiny Max (Tcoag, Ireland). Statistical processing was performed in SPSS Statistics 20.0 program.

Results. We found that patients with CT ABCB1 (rs4148738) C>T genotype had higher Cmin,ss /D value than patients with TT genotype (6.23 [4;13] vs 5.77 [4;17], p=0.018). No statistically significant associations were found between carriage of CYP3A4*22 (rs35599367) C>T, CYP3A5*3 A>G, ABCB1 (rs1045642) C>T gene polymorphisms and Cmin,ss /D value of apixaban. Also, there was no significant effect of carrying polymorphisms rs35599367, rs776746, rs4148738,rs4148642, and the above genes on the risks of hemorrhagic complications. However, the influence of ABCB1 (rs1045642) C>T polymorphism on the PT value was found (TT ABCB1 (rs1045642) C>T genotype carriers the CT value wassignificantly higher than in CT genotype (17.0 [40;112] vs. 14.9 [35;132]) p=0.044).

Conclusion. It was found that the Cmin,ss /D value was higher in patients with CT ABCB1 (rs4148738) C>T genotype than in patients with TT genotype. At the same time, carriage of polymorphisms of CYP3A4*22 (rs35599367) C>T, CYP3A5*3 A>G, ABCB1 (rs1045642) C>T genes did not affect the pharmacokinetics of apixaban and the risk of bleeding. We also identified the effect of ABCB1 (rs1045642) C>T gene polymorphism on the PT value.

About the Authors

l. V. Fedina
Russian Medical Academy of Continuing Professional Education
Russian Federation

Lyudmila V. Fedina

Moscow



i. N. Sychev
Russian Medical Academy of Continuing Professional Education
Russian Federation

Igor N. Sychev

Moscow



K. V. Mirzaev
Russian Medical Academy of Continuing Professional Education
Russian Federation

Karin B. Mirzayev

Moscow



A. V. Vardanyan
Russian Medical Academy of Continuing Professional Education
Russian Federation

Arshak V. Vardanyan

Moscow



S. V. Glagolev
Ministry of Health of the Russian Federation
Russian Federation

Sergey V. Glagolev

Moscow



A. A. Kachanova
Russian Medical Academy of Continuing Professional Education
Russian Federation

Anastasia A. Kachanova

Moscow



P. O. Bochkov
Russian Medical Academy of Continuing Professional Education
Russian Federation

Pavel О. Bochkov

Moscow



R. V. Shevchenko
Russian Medical Academy of Continuing Professional Education
Russian Federation

Roman V. Shevchenko

Moscow



S. N. Tuchkova
Russian Medical Academy of Continuing Professional Education

Svetlana N. Tuchkova

Moscow



I. V. Sychev
N. P. Ogarev National Research Mordovian State University
Russian Federation

Ivan V. Sychev

Saransk



S. P. Abdullaev
Russian Medical Academy of Continuing Professional Education
Russian Federation

Sherzod P. Abdullaev

Moscow



D A. Sychev
Russian Medical Academy of Continuing Professional Education
Russian Federation

Dmitry A. Sychev

Moscow



References

1. Chaudhary R, Sharma T, Garg J, et al. Direct oral anticoagulants: a review on the current role and scope of reversal agents. J Thromb Thrombolysis. 2020;49(2):271-286. DOI:10.1007/s11239-019-01954-2

2. Thompson LE, Davis BH, Narayan R, et al. Personalizing Direct Oral Anticoagulant Therapy for a Diverse Population: Role of Race, Kidney Function, Drug Interactions, and Pharmacogenetics. Clin Pharmacol Ther. 2023;113(3):585-599. DOI:10.1002/cpt.2714.

3. Bounameaux H, Reber G. New oral antithrombotics: a need for laboratory monitoring. Against. J Thromb Haemost. 2010;8(4):627-630. DOI:10.1111/j.1538-7836.2010.03759.x.

4. Barnes GD, Lucas E, Alexander GC, Goldberger ZD. National Trends in Ambulatory Oral Anticoagulant Use. Am J Med. 2015;128(12):1300-5.e2. DOI:10.1016/j.amjmed.2015.05.044.

5. Connolly SJ, Ezekowitz MD, Yusuf S, et al; RE-LY Steering Committee and Investigators. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009;361(12):1139-51. DOI:10.1056/NEJMoa0905561.

6. Patel MR, Mahaffey KW, Garg J, et al; ROCKET AF Investigators. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011;365(10):883- 91. DOI:10.1056/NEJMoa1009638.

7. Granger CB, Alexander JH, McMurray JJ, et al; ARISTOTLE Committees and Investigators. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365(11):981-92. DOI:10.1056/NEJMoa1107039.

8. van Es N, Coppens M, Schulman S, et al. Direct oral anticoagulants compared with vitamin K antagonists for acute venous thromboembolism: evidence from phase 3 trials. Blood. 2014;124(12):1968-1975. DOI:10.1182/blood-2014-04-571232.

9. Geller AI, Shehab N, Lovegrove MC, et al. Emergency Visits for Oral Anticoagulant Bleeding. J Gen Intern Med. 2020;35(1):371-373. DOI:10.1007/s11606-019-05391-y.

10. Shehab N, Lovegrove MC, Geller AI, et al. US Emergency Department Visits for Outpatient Adverse Drug Events, 2013-2014. JAMA. 2016;316(20):2115–2125. DOI:10.1001/jama.2016.16201.

11. Attelind S, Hallberg P, Wadelius M, et al. Genetic determinants of apixaban plasma levels and their relationship to bleeding and thromboembolic events. Front Genet. 2022;13:982955. DOI:10.3389/fgene.2022.982955.

12. Foerster KI, Hermann S, Mikus G, Haefeli WE. Drug-Drug Interactions with Direct Oral Anticoagulants. Clin Pharmacokinet. 2020;59(8):967-980. DOI:10.1007/s40262-020-00879-x.

13. Ahmed S, Zhou Z, Zhou J, Chen SQ. Pharmacogenomics of Drug Metabolizing Enzymes and Transporters: Relevance to Precision Medicine. Genomics Proteomics Bioinformatics. 2016;14(5):298-313. DOI:10.1016/j.gpb.2016.03.008.

14. Byon W, Garonzik S, Boyd RA, Frost CE. Apixaban: A Clinical Pharmacokinetic and Pharmacodynamic Review. Clin Pharmacokinet. 2019;58(10):1265-1279. DOI:10.1007/s40262-019-00775-z.

15. Dimatteo C, D’Andrea G, Vecchione G, et al. ABCB1 SNP rs4148738 modulation of apixaban interindividual variability. Thromb Res. 2016;145:24-26. DOI:10.1016/j.thromres.2016.07.005.

16. Ueshima S, Hira D, Fujii R, et al. Impact of ABCB1, ABCG2, and CYP3A5 polymorphisms on plasma trough concentrations of apixaban in Japanese patients with atrial fibrillation. Pharmacogenet Genomics. 2017;27(9):329-336. DOI:10.1097/FPC.0000000000000294.

17. Sherry ST, Ward MH, Kholodov M, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29(1):308-311. DOI:10.1097/FPC.0000000000000294.

18. Wu T, Wu S, Li L, et al. The impact of ABCB1, CYP3A4/5 and ABCG2 gene polymorphisms on rivaroxaban trough concentrations and bleeding events in patients with non-valvular atrial fibrillation. Hum Genomics. 2023;17(1):59. DOI:10.1186/s40246-023-00506-3.

19. Rodriguez S, Gaunt TR, Day INM. Hardy-Weinberg equilibrium testing of biological ascertainment for Mendelian randomization studies. Am J Epidemiol. 2009;169(4):505-514. DOI:10.1093/aje/kwn359.

20. Sychev IN, Fedina LV, Osipov AS, et al. Effect of polymorphisms in CYP3A4*22 (rs35599367) C>T, CYP3A5*3 (rs776746) A>G, ABCB1 (rs4148738) C>T and ABCB1 (rs1045642) C>T genes on apixaban anticoagulation: pilot study results. Meditsinskiy sovet = Medical Council. 2021;(4):41-46 (In Russ.) DOI:10.21518/2079-701X-2021-4-41-46.

21. Raymond J, Imbert L, Cousin T, et al. Pharmacogenetics of Direct Oral Anticoagulants: A Systematic Review. J Pers Med. 2021;11(1):37. DOI:10.3390/jpm11010037.

22. Lähteenmäki J, Vuorinen AL, Pajula J, et al. Pharmacogenetics of Bleeding and Thromboembolic Events in Direct Oral Anticoagulant Users. Clin Pharmacol Ther. 2021;110(3):768-776. DOI:10.1002/cpt.2316.

23. Shou W, Wang D, Zhang K, et al. Gene-wide characterization of common quantitative trait loci for ABCB1 mRNA expression in normal liver tissues in the Chinese population. PLoS One. 2012;7:e46295. DOI:10.1371/journal.pone.0046295.

24. Kryukov AV, Sychev DA, Andreev DA, et al. Influence of ABCB1 and CYP3A5 gene polymorphisms on pharmacokinetics of apixaban in patients with atrial fibrillation and acute stroke. Pharmgenomics Pers Med. 2018;11:43-49. DOI:10.2147/PGPM.S157111.

25. Conway SE, Hwang AY, Ponte CD, et al. Laboratory and Clinical Monitoring of Direct Acting Oral Anticoagulants: What Clinicians Need to Know. Pharmacotherapy 2017;37(2):236-248. DOI:10.1002/phar.1884.


Supplementary files

Review

For citations:


Fedina l.V., Sychev i.N., Mirzaev K.V., Vardanyan A.V., Glagolev S.V., Kachanova A.A., Bochkov P.O., Shevchenko R.V., Tuchkova S.N., Sychev I.V., Abdullaev S.P., Sychev D.A. Effect of CYP3A4/5, ABCB1 gene polymorphisms on the residual equilibrium concentration of apixaban and bleeding in patients with non-valvular atrial fibrillation and deep vein thrombosis. Rational Pharmacotherapy in Cardiology. 2024;20(1):19-26. (In Russ.) https://doi.org/10.20996/1819-6446-2024-2941

Views: 441


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)