Preview

Rational Pharmacotherapy in Cardiology

Advanced search

The Pathogenetic Basis of the Action of Bempedoic Acid

https://doi.org/10.20996/1819-6446-2022-12-11

Abstract

The modern cardiology has a wide range of medications which affect various pathogenetic links of atherosclerosis, but even the best of them still obtain disadvantages causing intolerance and medicine discontinuation. The development of new hypolipidemic medications will allow not only to introduce alternative therapies into the cardiology practice, but also to completely execute the strategy of residual risk reduction by utilizing rational combinations of medications. One of such alternatives could be bempedoic acid, which can have a positive effect on a number of endpoints as the results of third phase trials have shown. These effects are also confirmed in Mendelian randomization studies. The mechanism of action of bempedoic acid is presumably associated with inhibition of the activity of ATP citrate lyase – the enzyme responsible for the breakdown of citrate into acetyl-CoA and oxaloacetate. Acetyl-CoA, in turn, is used by the cell to synthesize cholesterol and fatty acids. Thus, bempedoic acid affects in the same metabolic pathway as statins, but at an earlier stage. According to this, it is possible that medications of these classes will have similar side effects and pleiotropic effects associated with modulation of the mevalonic pathway, such as prenylation regulatory proteins (small GTPases) or reduction of coenzyme Q synthesis. However, there are also some specific features of the pharmacodynamics and pharmacokinetics of bempedoic acid to be considered. In particular, once entered the body, it must be activated via esterification by very long-chain acyl-CoA synthetase-1. The enzyme isoform required for this process is expressed in a tissue-specific manner and, for example, is absent in skeletal myocytes. In addition, citrate, oxaloacetate, and acetyl-CoA are important regulators of many intracellular processes: metabolism, growth and proliferation, mechanotransduction, posttranslational modifications of histones and other proteins. The levels of all three substances are altered by bempedoic acid, although no firm conclusions about the effects of these changes can be drawn at this time. The mentioned features probably have a significant impact on the clinical profile of bempedoic acid and underlie the differences from statins already observed in third phase trials, including, for example, a reduced risk of the onset or worsening of diabetes mellitus while taking bempedoic acid.

About the Authors

A. S. Petrosyan
Kuban State Medical University
Russian Federation

Albina S. Petrosyan

Krasnodar



R. S. Rud'
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Ruslan S. Rud'

Moscow

eLibrary SPIN 3324-0277



P. P. Polyakov
Kuban State Medical University
Russian Federation

Pavel P. Polyakov

Krasnodar

eLibrary SPIN 9349-9545



A. Kh. Kade
Kuban State Medical University
Russian Federation

Azamat Kh. Kade

Krasnodar

eLibrary SPIN 1415-7612



S. A. Zanin
Kuban State Medical University
Russian Federation

Sergey A. Zanin

Krasnodar

eLibrary SPIN 7233-6883



References

1. Boytsov SA, Shalnova SA, Deev AD. The epidemiological situation as a factor determining the strategy for reducing mortality in the Russian Federation. Ter Arkhiv. 2020;92(1):4-9 (In Russ.) DOI:10.26442/00403660.2020.01.000510.

2. Hegele RA, Tsimikas S. Lipid-Lowering Agents. Circ Res. 2019;124(3):386-404. DOI:10.1161/CIRCRESAHA.118.313171.

3. Diagnostics and correction of lipid metabolism disorders in order to prevent and treat of atherosclerosis Russian recommendations VII revision. Atherosclerosis and dyslipidemia. 2020;1(38):7-42 (In Russ.) DOI:10.34687/2219-8202.JAD.2020.01.0002.

4. Afanasieva OI, Ezhov MV, Pokrovsky SN. Antisense oligonucleotides and therapeutical monoclonal antibodies as a basement for novel biological lipidlowering drugs. Russian Journal of Cardiology. 2018;23(8):99- 109 (In Russ.) DOI:10.15829/1560-4071-2018-8-99-109.

5. Newman CB, Preiss D, Tobert JA, et al. Statin Safety and Associated Adverse Events: A Scientific Statement From the American Heart Association. Arterioscler Thromb Vasc Biol. 2019;39(2):e38-e81. DOI:10.1161/ATV.0000000000000073.

6. Preiss D, Seshasai SRK, Welsh P, et al. Risk of Incident Diabetes With Intensive-Dose Compared With Moderate-Dose Statin Therapy: A Meta-analysis. JAMA. 2011;305(24):2556-64. DOI:10.1001/jama.2011.860.

7. Drapkina OM, Chernova EM. Myopathy as a side effect of statin therapy: mechanisms of development and prospects for treatment. Rational Pharmacotherapy in Cardiology. 2015;11(1):96-101 (In Russ.) DOI:10.20996/1819-6446-2015-11-1-96-101.

8. Goldacre B. Meta-analysis of side effects of statins shows need for trial transparency. BMJ. 2014;348:g2940. DOI:10.1136/bmj.g2940.

9. Bouitbir J, Sanvee GM, Panajatovic MV, et al. Mechanisms of statin-associated skeletal muscle-associated symptoms. Pharmacol Res. 2020;154:104201. DOI:10.1016/j.phrs.2019.03.010.

10. Sahebkar A, Cicero AF, Di Giosia P, et al. Pathophysiological mechanisms of statin‐associated myopathies: possible role of the ubiquitin‐proteasome system. J Cachexia Sarcopenia Muscle. 2020;11(5):1177-86. DOI:10.1002/jcsm.12579.

11. Guan ZW, Wu KR, Li R, et al. Pharmacogenetics of statins treatment: Efficacy and safety. J Clin Pharm Ther. 2019;44(6):858-67. DOI:10.1111/jcpt.13025.

12. Nikolic D, Banach M, Chianetta R, et al. An overview of statin-induced myopathy and perspectives for the future. Expert Opin Drug Saf. 2020;19(5):601-15. DOI:10.1080/14740338.2020.1747431.

13. Arutyunov GP, Boytsov SA, Voevoda MI, et al. Correction of hypertriglyceridemia in order to reduce the residual risk in atherosclerosis-related diseases. Expert Council Opinion. Russian Journal of Cardiology. 2019;24(9):44-51 (In Russ.) DOI:10.15829/1560-4071-2019-9-44-51.

14. Pinkosky SL, Groot PH, Lalwani ND, Steinberg GR. Targeting ATP-Citrate Lyase in Hyperlipidemia and Metabolic Disorders. Trends Mol Med. 2017;23(11):1047-63. DOI:10.1016/j.molmed.2017.09.001.

15. Cicero AF, Fogacci F, Hernandez AV, et al. Efficacy and safety of bempedoic acid for the treatment of hypercholesterolemia: A systematic review and meta-analysis. PLoS Med. 2020;17(7):e1003121. DOI:10.1371/journal.pmed.1003121.

16. Di Minno A, Lupoli R, Calcaterra I, et al. Efficacy and Safety of Bempedoic Acid in Patients With Hypercholesterolemia: Systematic Review and Meta‐Analysis of Randomized Controlled Trials. J Am Heart Assoc. 2020;9(15):e016262. DOI:10.1161/JAHA.119.016262.

17. Bays HE, Banach M, Catapano AL, et al. Bempedoic acid safety analysis: Pooled data from four phase 3 clinical trials. J Clin Lipidol. 2020;14(5):649-59.e6. DOI:10.1016/j.jacl.2020.08.009.

18. Banach M, Duell PB, Gotto AM, et al. Association of Bempedoic Acid Administration With Atherogenic Lipid Levels in Phase 3 Randomized Clinical Trials of Patients With Hypercholesterolemia. JAMA Cardiol. 2020;5(10):1124-35. DOI:10.1001/jamacardio.2020.2314.

19. Ray KK, Bays HE, Catapano AL, et al. Safety and Efficacy of Bempedoic Acid to Reduce LDL Cholesterol. N Engl J Med. 2019;380(11):1022-32. DOI:10.1056/NEJMoa1803917.

20. Icard P, Wu Z, Fournel L, et al. ATP citrate lyase: A central metabolic enzyme in cancer. Cancer Lett. 2020;471:125-34. DOI:10.1016/j.canlet.2019.12.010.

21. Burke AC, Huff MW. ATP-citrate lyase: genetics, molecular biology and therapeutic target for dyslipidemia. Curr Opin Lipidol. 2017;28(2):193-200. DOI:10.1097/MOL.0000000000000390.

22. Montesdeoca N, López M, Ariza X, et al. Inhibitors of lipogenic enzymes as a potential therapy against cancer. FASEB J. 2020;34(9):11355-81. DOI:10.1096/fj.202000705R.

23. Prentki M, Corkey BE, Madiraju SM. Lipid-associated metabolic signaling networks in pancreatic beta cell function. Diabetologia. 2020;63(1):10-20. DOI:10.1007/s00125-019-04976-w.

24. Xu J, Yin L, Xu Y, et al. Hepatic carboxylesterase 1 is induced by glucose and regulates postprandial glucose levels. PLoS One. 2014;9(10):e109663. DOI:10.1371/journal.pone.0109663.

25. MacDonald MJ, Longacre MJ, Langberg EC, et al. Decreased levels of metabolic enzymes in pancreatic islets of patients with type 2 diabetes. Diabetologia. 2009;52(6):1087-91. DOI:10.1007/s00125-009-1319-6.

26. Brault M, Ray J, Gomez YH, et al. Statin treatment and new-onset diabetes: a review of proposed mechanisms. Metabolism. 2014;63(6):735-45. DOI:10.1016/j.metabol.2014.02.014.

27. Masson W, Lobo M, Lavalle-Cobo A, et al. Effect of bempedoic acid on new onset or worsening diabetes: A meta-analysis. Diabetes Res Clin Pract. 2020;168:108369. DOI:10.1016/j.diabres.2020.108369.

28. Wang Q, Jiang L, Wang J, et al. Abrogation of hepatic ATP-citrate lyase protects against fatty liver and ameliorates hyperglycemia in leptin receptor-deficient mice. Hepatology. 2009;49(4):1166-75. DOI:10.1002/hep.22774.

29. ATP Citrate Lyase; ACLY. [cited by March 06, 2021]. Available from: https://www.omim.org/entry/108728.

30. Lee YH, Song GG. Genome-wide pathway analysis in attention-deficit/hyperactivity disorder. Neurol Sci. 2014;35(8):1189-96. DOI:10.1007/s10072-014-1671-2.

31. Wang Q, Li S, Jiang L, et al. Deficiency in hepatic ATP-citrate lyase affects VLDL-triglyceride mobilization and liver fatty acid composition in mice. J Lipid Res. 2010;51(9):2516-26. DOI:10.1194/jlr.M003335.

32. Ference BA, Ray KK, Catapano AL, et al. Mendelian Randomization Study of ACLY and Cardiovascular Disease. N Engl J Med. 2019;380(11):1033-42. DOI:10.1056/NEJMoa1806747.

33. Hólm H, Sulem P, Helgadóttir A, et al. Mendelian Randomization Study of ACLY and Cardiovascular Disease. N Engl J Med. 2020;383(7):e50. DOI:10.1056/NEJMc1908496.

34. Watson JA, Fang M, Lowenstein JM. Tricarballylate and hydroxycitrate: substrate and inhibitor of ATP: citrate oxaloacetate lyase. Arch Biochem Biophys. 1969;135(1):209-17. DOI:10.1016/0003-9861(69)90532-3.

35. Cramer CT, Goetz B, Hopson KL, et al. Effects of a novel dual lipid synthesis inhibitor and its potential utility in treating dyslipidemia and metabolic syndrome. J Lipid Res. 2004;45(7):1289-301. DOI:10.1194/jlr.M400018-JLR200.

36. Okopień B, Bułdak Ł, Bołdys A. Current and future trends in the lipid lowering therapy. Pharmacol Rep. 2016;68(4):737-47. DOI:10.1016/j.pharep.2016.03.016.

37. Filippov S, Pinkosky SL, Lister RJ, et al. ETC-1002 regulates immune response, leukocyte homing, and adipose tissue inflammation via LKB1-dependent activation of macrophage AMPK. J Lipid Res. 2013;54(8):2095-108. DOI:10.1194/jlr.M035212.

38. Burke AC, Telford DE, Sutherland BG, et al. Bempedoic Acid Lowers Low-Density Lipoprotein Cholesterol and Attenuates Atherosclerosis in Low-Density Lipoprotein Receptor–Deficient (LDLR+/− and LDLR−/−) Yucatan Miniature Pigs. Arterioscler Thromb Vasc Biol. 2018;38(5):1178-90. DOI:10.1161/ATVBAHA.117.310676.

39. Jha V, Galati S, Volpi V, et al. Discovery of a new ATP-citrate lyase (ACLY) inhibitor identified by a pharmacophore-based virtual screening study. J Biomol Struct Dyn. 2021;39(11):3996-4004. DOI:10.1080/07391102.2020.1773314.

40. Pinkosky SL, Newton RS, Day EA, et al. Liver-specific ATP-citrate lyase inhibition by bempedoic acid decreases LDL-C and attenuates atherosclerosis. Nat Commun. 2016;7:13457. DOI:10.1038/ncomms13457.

41. Bitzur R, Cohen H, Kamari Y, Harats D. Intolerance to Statins: Mechanisms and Management. Diabetes Care. 2013;36(Suppl 2):S325-S330. DOI:10.2337/dcS13-2038.

42. Drapkina OM, Chernova EM, Korneeva ON. Statins and myopathy: molecular mechanisms. Rational Pharmacotherapy in Cardiology. 2012;8(3):469-73 (In Russ.) DOI:10.20996/1819-6446-2012-8-3-469-473.

43. Arefieva TI, Filatova AY, Potekhina AV, Shchinova AM. Immunotropic Effects and Proposed Mechanism of Action for 3-Hydroxy-3-methylglutaryl-coenzyme A Reductase Inhibitors (Statins). Biochemistry. 2018;83(8):1111-29 (In Russ.) DOI:10.1134/S0006297918080023.

44. Pitlick M, Ernste F. Anti-HMGCR myopathy presenting with acute systolic heart failure. BMJ Case Rep. 2019;12(5):e230213. DOI:10.1136/bcr-2019-230213.

45. Skibitskiy VV, Prasolova SA, Fendrikova AV. Comparative efficiency of rozuvastatin administration in patients with heart failure and with preserved and diminished left ventricular ejection fraction. Kuban Scientific Medical Bulletin. 2011;(6):138-43 (In Russ.)

46. Matthews A, Herrett E, Gasparrini A, et al. Impact of statin related media coverage on use of statins: interrupted time series analysis with UK primary care data. BMJ. 2016;353:i3283. DOI:10.1136/bmj.i3283.

47. Nelson AJ, Puri R, Nissen SE. Statins in a Distorted Mirror of Media. Curr Atheroscler Rep. 2020;22(8):37. DOI:10.1007/s11883-020-00853-9.

48. Penson PE, Mancini GJ, Toth PP, et al. Introducing the ‘Drucebo’ effect in statin therapy: a systematic review of studies comparing reported rates of statin‐associated muscle symptoms, under blinded and open‐label conditions. J Cachexia Sarcopenia Muscle. 2018;9(6):1023-33. DOI:10.1002/jcsm.12344.

49. Jeon SM. Regulation and function of AMPK in physiology and diseases. Exp Mol Med. 2016;48(7):e245. DOI:10.1038/emm.2016.81.

50. Day EA, Ford RJ, Steinberg GR. AMPK as a Therapeutic Target for Treating Metabolic Diseases. Trends Endocrinol Metab. 2017;28(8):545-60. DOI:10.1016/j.tem.2017.05.004.

51. López M, Nogueiras R, Tena-Sempere M, Dieguez C. Hypothalamic AMPK: a canonical regulator of wholebody energy balance. Nat Rev Endocrinol. 2016;12(7):421-32. DOI:10.1038/nrendo.2016.67.

52. Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017;60(9):1577-85. DOI:10.1007/s00125-017-4342-z.

53. Piskovatska V, Stefanyshyn N, Storey KB, et al. Metformin as a geroprotector: experimental and clinical evidence. Biogerontology. 2019;20(1):33-48. DOI:10.1007/s10522-018-9773-5.

54. Ruyatkina LA, Ruyatkin DS. Multidimensional effects of metformin in patients with type 2 diabetes. Diabetes Mellitus. 2017;20(3):210-9 (In Russ.) DOI:10.14341/DM2003458-64.


Review

For citations:


Petrosyan A.S., Rud' R.S., Polyakov P.P., Kade A.Kh., Zanin S.A. The Pathogenetic Basis of the Action of Bempedoic Acid. Rational Pharmacotherapy in Cardiology. 2022;18(6):734-741. (In Russ.) https://doi.org/10.20996/1819-6446-2022-12-11

Views: 412


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)