Preview

Rational Pharmacotherapy in Cardiology

Advanced search

Chronic Heart Failure in Rheumatoid Arthritis Patients (Part III): Effects of Antirheumatic Drugs

https://doi.org/10.20996/1819-6446-2019-15-6-820-830

Abstract

Chronic autoimmune inflammation is one of the leading risk factors for the development of chronic heart failure (CHF) in rheumatoid arthritis (RA). The purpose of the review is to analyze the results of investigations on the effects of conventional synthetic disease-modifying anti-rheumatic drugs (csDMARDs), biological disease-modifying anti-rheumatic drugs (bDMARDs), and targeted csDMARDs on cardiac function and the risk of developing CHF in patients with RA. Methotrexate may reduce the CHF risk and have a positive effect on the course of this condition in patients with RA. Despite the data on the presence of leflunomide effects that impede myocardial remodeling, there is no evidence of the role of the drug in the prevention of CHF in RA patients. Hydroxychloroquine may contribute to the prevention of CHF, but the risk of developing severe cardiotoxicity should be considered when taking the drug for a long time. Most studies have not revealed the negative effect of tumor necrosis factor inhibitors on the prevalence and incidence of new cases of CHF in RA patients, and an improvement in the structure and function of the heart during therapy has been shown. Inhibitors of interleukin (IL) -1, inhibitors of IL-6, inhibitors of T-cell co-stimulation, anti-B-cell therapy, targeted csDMARDs do not increase the risk of CHF and may have cardioprotective effects, including slowing the progression of left ventricle myocardial dysfunction. Due to the high risk of CHF and CHF-associated mortality in RA patients, early diagnosis of cardiac dysfunction, development of a prevention and treatment strategies are needed, including high-quality prospective studies to assess the effect of anti-rheumatic therapy on myocardial function, risk of developing and decompensation of CHF in RA patients. It is possible that some drugs may possess protective effects on cardiomyocytes so they could become the first-line drugs in patients with CHF or the risk of its development.

About the Authors

D. S. Novikova
V.A. Nasonova Research Institute of Rheumatology
Russian Federation

Diana S. Novikova – MD, PhD, Leading Researcher, Systemic Rheumatic Diseases Laboratory

Kashirskoe shosse 34a, Moscow, 115522



H. V. Udachkina
V.A. Nasonova Research Institute of Rheumatology
Russian Federation

Helen V. Udachkina – MD, Researcher, Systemic Rheumatic Diseases Laboratory

Kashirskoe shosse 34a, Moscow, 115522



I. G. Kirillova
V.A. Nasonova Research Institute of Rheumatology
Russian Federation

Irina G. Kirillova – MD, Researcher, Systemic Rheumatic Diseases Laboratory

Kashirskoe shosse 34a, Moscow, 115522



T. V. Popkova
V.A. Nasonova Research Institute of Rheumatology
Russian Federation

Tatiana V. Popkova – MD, PhD, Leading Researcher, Systemic Rheumatic Diseases Laboratory

Kashirskoe shosse 34a, Moscow, 115522



References

1. Novikova D.S., Kirillova I.G., Udachkina H.V., Popkova T.V. Chronic heart failure in rheumatoid arthritis patients (Part I): prevalence, etiology and pathogenesis. Rational Pharmacotherapy in Cardiology. 2018;14(5):703-10. (In Russ). DOI:10.20996/1819-6446-2018-14-5-703-710.

2. Novikova D.S., Udachkina H.V., Kirillova I.G., Popkova T.V. Chronic heart failure in rheumatoid arthritis patients (Part II): difficulties of diagnosis. Rational Pharmacotherapy in Cardiology 2018;14(6):870878. (In Russ). DOI:10.20996/18196446-2018-14-6-870-878.

3. Ridker P.M., Everett B.M., Thuren T., et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377:1119-31. DOI:10.1056/NEJMoa1707914.

4. Zhang Y., Lu N., Peloquin C., et al. Improved survival in rheumatoidarthritis: a general population-based cohort study. Ann Rheum Dis. 2017;76(2):408-13. DOI:10.1136/annrheumdis-2015-209058.

5. Kerola A.M., Nieminen T.V., Virta L.J., et al. No increased cardiovascular mortality among early rheumatoid arthritis patients: a nationwide register study in 2000-2008. Clin Exp Rheumatol. 2015; 33(3):391-8. PMID: 25936374.

6. Solomon D.H., Reed G.W., Kremer J.M., et al. Disease activity in rheumatoid arthritis and the risk of cardiovascular events. Arthritis Rheumatol. 2015;67:1449-55. DOI:10.1002/art.39098.

7. Logstrup B.B., Ellingsen T., Pedersen A.B., et al. Development of heart failure in patients with rheumatoid arthritis: A Danish population-based study. Eur J Clin Invest. 2018;48(5):e12915. DOI:10.1111/eci.12915.

8. Arts E.E., Fransen J., denBroeder A.A., et al. Low disease activity (DAS28≤3.2) reduces the risk of first cardiovascular event in rheumatoid arthritis: a time-dependent Cox regression analysis in a large cohort study. Ann Rheum Dis. 2017;76(10):1693-9. DOI:10.1136/annrheumdis-2016-210997.

9. Bradham W., Ormseth M.J., Elumogo C., et al. Absence of fibrosis and inflammation by cardiac magnetic resonance imaging in rheumatoid arthritis patients with low to moderate disease activity. J Rheumatol. 2018;45(8):1078-84. DOI:10.3899/jrheum.170770.

10. Popkova T.V., Novikova D.S., Gasparyan A.Y., Nasonov E.L. Cardiovascular effects of methotrexate in rheumatoid arthritis revisited. Curr Med Chem. 2015;22(16):1903-10. PMID:25876749. DOI:10.2174/0929867322666150415122039.

11. Roubille C., Richer V., Starnino T., et al. The effects of tumour necrosis factor inhibitors, methotrexate, non-steroidal anti-inflammatory drugs and corticosteroids on cardiovascular events in rheumatoid arthritis, psoriasis and psoriatic arthritis: a systematic review and meta-analysis. Ann Rheum Dis. 2015; 74(3):480-9. DOI:10.1136/annrheumdis-2014-206624.

12. Ridker P.M., Everett B.M., Pradhan A., et al. Low-Dose Methotrexate for the Prevention of Atherosclerotic Events. N Engl J Med. 2019;21;380(8):752-2. DOI:10.1056/NEJMoa1809798.

13. Zhang Z., Zhao P., Li A., et al. Effects of methotrexate on plasma cytokines and cardiac remodeling and function in postmyocarditis rats. Mediators Inflamm. 2009;2009:389720. DOI:10.1155/2009/389720.

14. Li W., Gong K., Ding Y., et al. Effects of triptolide and methotrexate nanosuspensions on left ventricular remodeling in autoimmune myocarditis rats. Int J Nanomedicine. 2019;14:851-63. DOI:10.2147/IJN.S191267.

15. Campochiaro C., De Luca G., Sartorelli S., et al. Efficacy and Safety of Methotrexate for the Treatment of Autoimmune Virus-Negative Myocarditis: A Case Series. J ClinRheumatol 2018; [Epub ahead of print]. DOI:10.1097/RHU.0000000000000897.

16. Gong K., Zhang Z., Sun X., et al. The nonspecific anti-inflammatory therapy with methotrexate for patients with chronic heart failure. Am Heart J. 2006;151(1):62-8. DOI:10.1016/j.ahj.2005.02.040.

17. Bernatsky S., Hudson M., Suissa S. Anti-rheumatic drug use and risk of hospitalization for congestive heart failure in rheumatoid arthritis. Rheumatology (Oxford). 2005;44(5):677-80. DOI:10.1093/rheumatology/keh610.

18. Myasoedova E., Crowson C.S., Nicola P.J., et al. The influence of rheumatoid arthritis disease characteristics on heart failure. J Rheumatol. 2011;38(8):1601-6. DOI:10.3899/jrheum.100979.

19. Logstrup B.B., Masic D., Laurbjerg T.B., et al. Left ventricular function at two-year follow-up in treatmentnaive rheumatoid arthritis patients is associated with anti-cyclic citrullinated peptide antibody status: a cohort study. Scand J Rheumatol. 2017;46(6):432-40. DOI:10.1080/03009742.2016.1249941.

20. Baker J.F., Sauer B., Teng C.C., et al. Initiation of disease-modifying therapies in rheumatoid arthritis is associated with changes in blood pressure. J Clin Rheumatol. 2018;24(4):203-209. DOI:10.1097/RHU.0000000000000736.

21. Mangoni A.A., Baghdadi L.R., Shanahan E.M., et al. Methotrexate, blood pressure and markers of arterial function in patients with rheumatoid arthritis: a repeated cross-sectional study. Ther Adv Musculoskel Dis. 2017;9(9):213-29. DOI:10.1177/1759720X17719850.

22. Gasparyan A.Y., Ayvazyan L., Cocco G., Kitas G.D. Adverse cardiovascular effects of antirheumatic drugs: implications for clinical practice and research. Curr Pharm Des. 2012;18(11):1543-55. DOI:10.2174/138161212799504759.

23. Minoretti P., Bruno A., Di Vito C., Emanuele E. Leflunomide as an antiatherogenic drug. Med Hypotheses. 2007;68(5):1175-6. DOI:10.1016/j.mehy.2006.10.036.

24. Nielsen C.B., Nielsen C., Nybo M., et al. The in vitro effect of antirheumatic drugs on platelet function. Platelets. 2019;2:1-10. DOI:10.1080/09537104.2019.1609665.

25. Ma Z.G., Zhang X., Yuan Y.P., et al. A77 1726 (leflunomide) blocks and reverses cardiac hypertrophy and fibrosis in mice. Clin Sci (Lond.) 2018;132:685-99. DOI:10.1042/CS20180160.

26. Suissa S., Bernatsky S., Hudson M. Antirheumatic drug use and the risk of acute myocardial infarction. Arthritis Rheum. 2006;55:531-6. DOI:10.1002/art.22094.

27. Naranjo A., Sokka T., Descalzo M.A., et al.; f-RA Group. Cardiovascular disease in patients with rheumatoid arthritis: results from the QUEST-RA study. Arthritis Res Ther. 2008;10(2):R30. DOI:10.1186/ar2383.

28. Solomon D.H., Avorn J., Katz J.N. Immunosuppressive medications and hospitalization for cardiovascular events in patients with rheumatoid arthritis. Arthritis Rheum. 2006;54:3790-8. DOI:10.1002/art.22255.

29. Serelis J., Panagiotakos D.B., Mavrommati M., Skopouli F.N. Cardioascular disease is related to hypertension in patients with RA: a greek cohort study. J Rheumatol. 2011;38(2):236-41. DOI:10.3899/jrheum.100564.

30. Novikova D.S., Popkova Т.V., Gerasimov А.N., et al. High heart rate as a potential risk factor for development of cardiovascular diseases in women with rheumatoid arthritis. Rational Pharmacother Card. 2012;8(5):636-46 (In Russ). DOI:10.20996/1819-6446-2012-8-5-636-646.

31. Coirier V., Lescoat A., Chabanne C., et al. Pulmonary arterial hypertension in four patients treated by leflunomide. Joint Bone Spine. 2018;85(6):761-3. DOI:10.1016/j.jbspin.2017.12.014.

32. Rempenault C., Combe B., Barnetche T., et al. Clinical and Structural Efficacy of Hydroxychloroquine in Rheumatoid Arthritis: A Systematic Review. Arthritis Care Res. 2019; [Epub ahead of print]. DOI:10.1002/acr.23826.

33. Rempenault C., Combe B., Barnetche T., et al. Metabolic and cardiovascular benefits of hydroxychloroquine in patients with rheumatoid arthritis: a systematic review and meta-analysis. Ann Rheum Dis. 2018;77(1):98-103. DOI:10.1136/annrheumdis-2017-211836.

34. Liu D., Li X., Zhang Y., et al. Chloroquine and hydroxychloroquine are associated with reduced cardiovascular risk: a systematic review and meta-analysis. Drug Design, Development and Therapy. 2018;11;12:1685-95. DOI:10.2147/DDDT.S166893.

35. Chatre C., Roubille F., Vernhet H., et al. Cardiac Complications Attributed to Chloroquine and Hydroxychloroquine: A Systematic Review of the Literature Drug Saf. 2018;41(10):919-31. DOI:10.1007/s40264-018-0689-4.

36. Baniaamam M., Paulus W.J., Blanken A.B., Nurmohamed M.T. The effect of biological DMARDs on the risk of congestive heart failure in rheumatoid arthritis: a systematic review. Expert Opin Biol Ther. 2018;18(5):585-94. DOI:10.1080/14712598.2018.1462794.

37. Kotyla P.J. Bimodal function of anti-TNF treatment: shall we be concerned about anti-TNF treatment in patients with rheumatoid arthritis and heart failure? Int J Mol Sci. 2018;12;19(6). pii:E1739. DOI:10.3390/ijms19061739.

38. Hartman M.H.T., Groot H.E., Leach I.M., et al. Trends Cardiovasc Med. 2018l;28(6):369-79. DOI:10.1016/j.tcm.2018.02.003.

39. Pascale V., Finelli R., Giannotti R., et al. Cardiac eccentric remodeling in patients with rheumatoid arthritis. Sci Rep. 2018;8(1):5867. DOI:10.1038/s41598-018-24323-0.

40. Ntusi N.A.B., Francis J.M., Sever E., et al. Anti-TNF modulation reduces myocardial inflammation and improves cardiovascular function in systemic rheumatic diseases. Int J Cardiol. 2018;270:253-59. DOI:10.1016/j.ijcard.2018.06.099.

41. Mann D.L., McMurray J.J., Packer M., et al. Targeted anti cytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation. 2004;109:1594-602. DOI:10.1161/01.CIR.0000124490.27666.B2.

42. Chung E.S., Packer M., Lo K.H., et al. Anti-TNF therapy against congestive heart failure investigators. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation. 2003;107:3133-40. DOI:10.1161/01.CIR.0000077913.60364.D2.

43. Setoguchi S., Schneeweiss S., Avorn J., et al. Tumor necrosis factor-alpha antagonist use and heart failure in elderly patients with rheumatoid arthritis. Am Heart J. 2008;156(2):336-41. DOI:10.1016/j.ahj.2008.02.025.

44. Curtis J.R., Kramer J.M., Martin C., et al. Heart failure among younger rheumatoid arthritis and Crohn's patients exposed to TNF-alpha antagonists. Rheumatology (Oxford). 2007;46(11):168893. DOI:10.1093/rheumatology/kem212.

45. Santos R.C., Figueiredo V.N., Martins L.C., et al. Infliximab reduces cardiac output in rheumatoid arthritis patients without heart failure. Rev Assoc Med Bras. 2012;58(6):698-702.

46. Al-Aly Z., Pan H., Zeringue A., et al. Tumor necrosis factor-αblockade, cardiovascular outcomes, and survival in rheumatoid arthritis. Translational Research. 2011;157(1):10-8. DOI:10.1016/j.trsl.2010.09.005.

47. Jensen T.B., Tsao N., Pawar A., et al. Risk of heart failure following exposure to non-TNFi compared to TNFi biologics in us patients with rheumatoid arthritis. Ann Rheum Dis. 2019;78 suppl. 2:A1392. DOI:10.1136/annrheumdis-2019-eular.1384

48. Schau T., Gottwald M., Arbach O., et al. Increased prevalence of diastolic heart failure in patients with rheumatoid arthritis correlates with active disease, but not with treatment type. J Rheumatol. 2015;42(11):2029-37. DOI:10.3899/jrheum.141647.

49. Solomon D.H., Rassen J.A., Kuriya B., et al. Heart failure risk among patients with rheumatoid arthritis starting a TNF antagonist. Ann Rheum Dis. 2013;72:1813-8. DOI:10.1136/annrheumdis-2012-202136.

50. Tomaš L., Lazurova I., Oetterova M., et al. Left ventricular morphology and function in patients with rheumatoid arthritis. Wien Klin Wochenschr. 2013;125(9-10):233-8. DOI:10.1007/s00508-0130349-8.

51. Vizzardi E., Cavazzana I., Franceschini F. Left ventricular function in rheumatoid arthritis during anti-TNF-treatment: a speckle tracking prospective echocardiographic study Monaldi Arch Chest Dis. 2016;84(1-2):716. DOI:10.4081/monaldi.2015.716.

52. Wolfe F., Michaud K. Heart failure in rheumatoid arthritis: rates, predictors, and the effect of antitumor necrosis factor therapy. 2004;116(5):305-11. DOI:10.1016/j.amjmed.2003.09.039

53. Morgan C.L., Emery P., Porter D., et al. Treatment of rheumatoid arthritis with etanercept with reference to disease-modifying anti-rheumatic drugs: Long-term safety and survival using prospective, observational data. Rheumatology. 2014;53(1):186-94. DOI:10.1093/rheumatology/ket333.

54. Peters M.J.L., Welsh P., McInnes I.B., et al. Tumour necrosis factor α blockade reduces circulating Nterminal pro-brain natriuretic peptide levels in patients with active rheumatoid arthritis: Results from a prospective cohort study. Ann Rheum Dis. 2010;69(7):1281-85. DOI:10.1136/ard.2009.119412

55. Kotyla P.J., Owczarek A., Rakoczy J., et al. Infliximab treatment increases left ventricular ejection fraction in patientswith rheumatoid arthritis: assessment of heart function by echocardiography, endothelin 1, interleukin 6, and NT-pro brain natriuretic peptide. J Rheumatol. 2012;39:701-6.

56. Cetin S., Mustafa G.V., Goksal K., et al. Infliximab, an anti-TNF-alpha agent, improves left atrial abnormalities in patients with rheumatoid arthritis: preliminary results. Cardiovasc J Afr. 2014;25(4):168-75.

57. Amigues I., Tugcu A., Russo C., et al. Myocardial inflammation, measured using 18-fluorodeoxyglucose positron emission tomography-computed tomography (FDG PET-CT) is associated with disease activity in rheumatoid arthritis. Arthritis Rheumatol. 2019;71(4):496-506. DOI:10.1002/art.40771.

58. Giles J.T., Malayeri A.A., Fernades V., et al. Left ventricular Structure and Function in Patients With Rheumatoid Arthritis, As Assessed by Cardiac Magnetic Resonance Imaging. Arthritis and Rheumatism. 2010;62(4):940-51. DOI:10.1002/art.27349.

59. Ikonomidis I., Lekakis J.P., Nikolaou M., et al. Inhibition of interleukin-1 by anakinra improves vascular and left ventricular function in patients with rheumatoid arthritis. Circulation. 2008;117:2662-9. DOI:10.1161/CIRCULATIONAHA.107.731877.

60. Ikonomidis I., Tzortzis S., Andreadou I., et al. Increased benefit of interleukin-1 inhibition on vascular function, myocardial deformation, and twisting in patients with coronary artery disease and coexisting rheumatoid arthritis. Circ Cardiovasc Imaging. 2014;7:619-28. DOI:10.1161/CIRCIMAGING.113.001193.

61. Van Tassell B.W., Arena R., Biondi-Zoccai G., et al. Effects of interleukin-1 blockade with anakinra on aerobic exercise capacity in patients with heart failure and preserved ejection fraction (from the DHART pilot study). Am J Cardiol. 2014;113:321-7. DOI:10.1016/j.amjcard.2013.08.047.

62. VanTassell B.W., Canada J., Carbone S., et al. Interleukin-1 blockade in recently decompensated systolic heart failure: results from REDHART (Recently Decompensated Heart Failure Anakinra Response Trial). Circ Heart Fail. 2017;10(11): PII:e004373. DOI:10.1161/CIRCHEARTFAILURE.117.004373.

63. Ikonomidis I., Pavlidis G., Katsimbri P. Differential effects of inhibition of interleukin 1 and 6 on myocardial, coronary and vascular function. Clin Res Cardiol. 2019;108(10):1093-101. DOI:10.1007/s00392-019-01443-9.

64. Abbate A., Canada J.M., Van Tassell B.W., et al. A Interleukin-1 blockade in rheumatoid arthritis and heart failure: A missed opportunity? Int J Cardiol. 2014;171(3):e125-6. DOI:10.1016/j.ijcard.2013.12.078.

65. De Luca G., Campochiaro C., Cavalli G., et al. Efficacy and safety of anakinra in the treatment of autoimmune myocarditis Ann Rheum Dis. 2019;78 suppl 2:A576. DOI:10.1136/annrheumdis-2019eular.3067.

66. Abbate A. Interleukin-1b lockade with canakinumab to improve exercise capacity in patients with chronic systolic heart failure and elevated high sensitivity c-reactive protein (Hs-CRP). [cited by Sep 20, 2019]. Available from: https://clinicaltrials.gov/ct2/show/NCT01900600.

67. Yokoe I., Kobayashi H., Kobayashi Y., et al. Impact of tocilizumab on N-terminal pro-brain natriuretic peptide levels in patients with active rheumatoid arthritis without cardiac symptoms. Scand J Rheumatol. 2018;47(5):364-70. DOI:10.1080/03009742.2017.1418424.

68. Generali E., Carrara C., Selmi G., et. al. Comparison of the risks of hospitalisation for cardiovascular events in patients with rheumatoid arthritis treated with tocilizumab and etanercept. Clinical and Experimental Rheumatology. 2018;36:310-3.

69. Xie F., Yun H., Levitan E.B., et al. Tocilizumab and the risk for cardiovascular disease: a direct comparison among biologic disease-modifying antirheumatic drugs for rheumatoid arthritis patients. Arthritis Care Res (Hoboken). 2019;71(8):1004-1018. DOI:10.1002/acr.23737.

70. Kobayashi H., Kobayashi Y., Giles J.T., et al. Tocilizumab treatment increases left ventricular ejection fraction and decreases left ventricular mass index in patients with rheumatoid arthritis without cardiac symptoms: assessed using 3.0 tesla cardiac magnetic resonance imaging. J Rheumatol. 2014;41(10):1916-21. DOI:10.3899/jrheum.131540.

71. Kobayashi Y., Kobayashi H., Giles J., et al. Takei Impact of biological treatment on left ventricular function and morphology in rheumatoid arthritis patients without cardiac symptoms, assessed by cardiac magnetic resonance imaging. Scand J Rheumatol. 2016;1-2 DOI:10.3109/03009742.2016.1173722

72. Welsh P., Tuckwell K., McInnes I.B., Sattar N. Effect of IL-6 receptor blockade on high-sensitivity troponin T and NT-proBNP in rheumatoid arthritis. Atherosclerosis. 2016;254:167-71. DOI:10.1016/j.atherosclerosis.2016.10.016.

73. Suzuki A., Tamamura T., Okai T. Five-year administration of tocilizumab to a patient with rheumatoid arthritis complicated by severe chronic heart failure. Nihon Rinsho Meneki Gakkai Kaishi. 2014;37(6):488-92. DOI:10.2177/jsci.37.488.

74. Nevers T., Salvador A.M., Grodecki-Pena A., et al. Left ventricular T-cell recruitment contributes to the pathogenesis of heart failure. Circ Heart Fail. 2015;8(4):776-87. DOI:10.1161/CIRCHEARTFAILURE.115.002225.

75. Kallikourdis M., Martini E., Carullo P. T cell costimulation blockade blunts pressure overload-induced heart failure. Nat Commun. 2017;8:14680. DOI:10.1038/ncomms14680.

76. Generali E., Carrara G., Kallikourdis M., et al. Risk of hospitalization for heart failure in rheumatoid arthritis patients treated with etanercept and abatacept. Rheumatol Int. 2019;39(2):239-43. DOI:10.1007/s00296-018-4196-9.

77. Jin Y., Kang E.H., Brill G., et al. Cardiovascular (CV) Risk after Initiation of Abatacept versus TNF Inhibitors in Rheumatoid Arthritis Patients with and without Baseline CV Disease. J Rheumatol. 2018;45(9):1240-8. DOI:10.3899/jrheum.170926.

78. Novikova D.S., Popkova T.V., Nasonov E.L. The effect of anti-B-cell therapy on the development of atherosclerosis in patients with rheumatoid arthritis. Curr Pharm Des. 2012;18:1512-8. DOI:10.2174/138161212799504768.

79. Novikova D.S., Popkova T.V., Lukina G.V., et al. The effects of rituximab on lipids, arterial stiffness and carotid Intima-media thickness in rheumatoid arthritis. J Korean Med Sci, 2016;31(2):202-7. DOI:10.3346/jkms.2016.31.2.202.

80. Sanchez-Trujillo L., Jerjes-Sanchez C., Rodriguez D., et al. Phase II clinical trial testing the safety of a humanised monoclonal antibody anti-CD20 in patients withheart failure with reduced ejection fraction, ICFEr-RITU2: study protocol. BMJ Open. 2019;9:e022826. DOI:10.1136/bmjopen-2018022826.

81. Youker K.A., Assad-Kottner C., Cordero-Reyes A.M., et al. High proportion of patients with endstage heart failure regardless of aetiology demonstrates anti-cardiac antibody deposition in failing myocardium: humoral activation, a potential contributor of disease progression. Eur Heart J. 2014;35:1061-8. DOI:10.1093/eurheartj/eht506.

82. Sanchez-Trujillo L., Vazquez-Garza E., Castillo E.C., et al. Role of adaptive immunity in the development and progression of heart failure: new evidence. Arch Med Res. 2017;48:1-11. DOI:10.1016/j.arcmed.2016.12.008.

83. Lee S. Safe Use of Rituximab in an Elderly Patient With Rheumatoid Arthritis and Severe Heart Failure A Case Report. J Clin Rheumatol. 2018;24(3):167-9.

84. Charles-Schoeman C., Wicker P., Gonzalez-Gay M.A., et al. Cardiovascular safety findings in patients with rheumatoid arthritis treated with tofacitinib, an oral Janus kinase inhibitor. Semin Arthritis Rheum. 2016;46(3):261-71. DOI:10.1016/j.semarthrit.2016.05.014.

85. Kremer J., Bingham C., Cappelli L., et al. Post-approval comparative safety study of tofacitinib and biologic DMARDS: five-year results from a US-based rheumatoid arthritis registry Ann Rheum Dis. 2019;78 suppl 2:A82. DOI:10.1136/annrheumdis-2019-eular.621.

86. Novikova D.S., Udachkina H.V., Markelova E.I., et al. Dynamics of body mass index and visceral adiposity index in patients with rheumatoid arthritis treated with tofacitinib. Rheumatol Int. 2019;39(7):1181-9. DOI:10.1007/s00296-019-04303-x.

87. Novikova D., Kirillova I., Markelova E., et al. The first report of significantly improvement of NT-proBNP level in rheumatoid arthritis patients treated with tofacitinib during 12-month follow-up. Ann Rheum Dis. 2019;78 suppl 2:pA368. DOI:10.1136/annrheumdis-2019-eular.2865.

88. Taylor P.C., Weinblatt M.E., Burmester G.R., et al. Cardiovascular safety during treatment with baricitinib in rheumatoid arthritis. Arthritis Rheumatol. 2019;71(7):1042-55. DOI:10.1002/art.40841.


Review

For citations:


Novikova D.S., Udachkina H.V., Kirillova I.G., Popkova T.V. Chronic Heart Failure in Rheumatoid Arthritis Patients (Part III): Effects of Antirheumatic Drugs. Rational Pharmacotherapy in Cardiology. 2019;15(6):820-830. (In Russ.) https://doi.org/10.20996/1819-6446-2019-15-6-820-830

Views: 785


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1819-6446 (Print)
ISSN 2225-3653 (Online)